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The effect of a periodic driving force on coherent tunneling of a driven double square-well system, espe-
cially when its central potential barrier is very tall and very thin, is investigated. The suppression or enhance-
ment of the tunneling of a wave packet properly chosen in the double-well system may be achieved by a
judicious choice of the period of a driving force, i.e., by a particular choice of the generating condition of a
nonlinear resonance exhibiting a desirable property. We analyze this mechanism by exploiting both the prop-
erties of a dynamical symmetry of the Hamiltonian and the localized properties of Floquet states induced by the
nonlinear resonance.@S1063-651X~96!06807-9#

PACS number~s!: 05.45.1b, 73.40.Gk, 47.52.1j, 03.65.2w

I. INTRODUCTION

The study of quantum dynamical tunneling for double-
well systems in the presence of a periodic driving force is a
subject currently under intense investigation. The application
of a periodic driving force to the tunneling systems generates
a variety of complex behaviors. As a result, the interplay
between chaos and tunneling is the subject of recent work by
many researchers@1–7#. A wave packet initially centered on
one of the symmetric Kolmogorov-Arnold-Moser~KAM ! is-
lands can tunnel through the chaotic sea to reach the other
KAM island, and then return to the original island. This kind
of quantum dynamical tunneling between the disconnected
symmetric KAM islands first studied by Davis and Heller
@8#, has been under recent study.

Now, it was discovered by Lin and Ballentine@9# that for
certain values of the driving force parameters, the tunneling
rate can be enhanced by many orders of magnitude compared
with the undriven rate. Peres@10# pointed out that the ob-
served tunneling is due to a dynamical symmetry of the
Hamiltonian, which remains invariant under combined spa-
tial reflection and time translation. However, the dynamical
symmetry cannot sufficiently explain why the Floquet states
should, in some cases but not in others, be approximately
localized in the regular regions of classical phase space@11#.
It might be explained by studying the characteristics of non-
linear resonances induced by a periodic driving force. In this
case, Lin and Ballentine@12# found that the tunneling times
of the localized Floquet state between the resonant islands
become rather erratic with the increase of the amplitude of
the driving force. Perhaps this can be ascribed to a mecha-
nism of chaos-induced avoided level crossing between the
Floquet states associated with the chaotic part of phase space
and a member of the quasidegenerate doublet@13#. On the
other hand, it was independently shown in the deep quantum
regime by Grossmannet al. @14–17# that the driving param-
eters can also be adjusted to reduce the tunneling rate to zero.
The total inhibition of the tunneling occurs at the exact
crossing of the two levels for the even and the odd Floquet
states.

To control tunneling properties of systems, these proper-

ties of enhancement and suppression of tunneling have been
applied. Bavli and Metiu@18# showed that a semi-infinite
laser pulse can be used to localize an electron in one of the
wells of a double-well potential with the suppression mecha-
nism of tunneling in the deep quantum regime. An alterna-
tive way of suppressing tunneling is to destroy the discrete
symmetry itself. Farrelly and Milligan@19# also revealed this
by combining the mechanism with the result studied by Lin
and Ballentine, that is to say, the control and suppression of
tunneling is achieved by driving the system with two fields
whose frequencies are a 1:2 ratio.

In this paper, we will show an example of a control sys-
tem of tunneling which uses a different mechanism from the
ones described above and then study its properties in a not so
deep quantum regime and weakly chaotic regime. We will
discuss how to select an initial wave packet whose coherent
tunneling is capable of being controlled by an appropriate
choice of a period of the driving force in a driven double
square-well system when its central barrier is very tall and
very thin. Patterns of regular islands in the Poincare´ surface
of section rest on the period of the driving force, the ampli-
tude of the driving force, and other variables. In this case, the
property of a regular island, especially the property of a
stable fixed point of a regular island, is well described by the
property of the corresponding nonlinear resonance. Accord-
ingly, if we control the generating condition of a nonlinear
resonance exhibiting the property that suppresses or en-
hances the tunneling of the system, we can control the tun-
neling of the system.

Section II begins with a description of our model system.
Section III examines the properties of a tunnel controlling
system by changing the period of the driving force in a
double square-well system. Section IV analyzes the mecha-
nism of suppressed tunneling and enhanced tunneling by
studying the properties of dynamical symmetry of the Hamil-
tonian and localized Floquet states induced by a nonlinear
resonance. Section V draws some concluding remarks.

II. SYSTEM

We study dynamical properties of a localized wave packet
affected by a coherent driving forceFcos(2pt/T) in a double
square-well potentialV(q),
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V~q!5H `, for uqu>a,

0, for b,uqu,a,

V0 , for uqu<b.

~1!

To observe the motion of the wave packet and obtain the
time-evolution unitary matrix of the wave packet, we inte-
grate numerically the time-dependent Schro¨dinger equation,

i\
dcn~ t !

dt
5 (

m51
FcosS 2pt

T D ^unuquum&cm~ t !ei ~En2Em!t/\,

~2!

which is derived from the HamiltonianH of the system,

H52
\2

2m

]2

]q2
1V~q!1qFcosS 2pt

T D[H01qFcosS 2pt

T D ,
~3!

and the total wave function c(q,t)
5(n51cn(t)un(q)e

2 iEnt/\, where theEn and theun(q) are
thenth eigenvalue and thenth eigenfunction ofH0 , respec-
tively. In the absence of the driving force, we get numeri-
cally the eigenvalueEn and the eigenfunctionun presented
by a sine or hyperbolic sine function. The parameters used in
this paper are the massm51, the Planck constant\51, the
potential width 2a58, the height of the central potential bar-
rier V05500, the width of the central potential barrier 2b,
the amplitude of driving forceF, and the period of the driv-
ing forceT.

In this case,V0'E81, and the mean energy of eigenstates
or Floquet states, which we will discuss in this paper, is
approximately;E40. On the one hand, the diffusive tunnel-
ing from one well to the other by global chaos is possible
when F.100, but we only treat our system whenF<6.
Period-1 resonance in the single square-well system dis-
cussed in Sec. IV B undergoes global chaos by resonance
overlap when the amplitude of the driving force is greater
than the critical valueFc.6.3, while the critical value of
period-1/2 resonance in the double square-well system dis-
cussed in Sec. IV A is approximatelyFc.12.5. Because the
shape of the potential in our system is stiffer than that of the
harmonic potential, chaotic properties are observed more
easily in a lower energy region when the amplitude of the
driving force is small.

To compare the properties of a quantum resonance with
those of a classical resonance manifested in the Poincare´
surface of section, we compute the Husimi function
PH(q0 ,p0 ,t) of a wave packetc(q,t) defined as@20–22#

PH~q0 ,p0 ,t !5
1

2p\
z^wq0 ,p0

~q!uc~q,t !& z2 ~4!

wq0 ,p0
~q!5F k

\pG1/4expF i p0q\
2

k~q2q0!
2

2\ G , ~5!

wherek is the coarse graining parameter. For all the Husimi
functions displayed in this paper,k51.5.

III. AN EXAMPLE OF THE TUNNEL CONTROLLING
SYSTEM

Figure 1 shows a possibility that the tunneling of an ini-
tially localized wave packetc(q,t) is capable of being con-
trolled by the change of the period of a sinusoidal driving
force in a tunnel controlling system. Or rather, the wave
packet undergoes suppressed tunneling at the time interval
~0,3!, and enhanced tunneling at the time interval~3,6!, as
the period of the driving forceF0(t)52Fcos(2pt/T) is
changed fromT51/2 toT51. The driving forceF0(t), the
absolute square of the value of the wave packetuc(q,t)u2,
and the occupation probability ofuc(q,t)u2 in the left well
rL(t) are drawn in the top, middle and bottom of Fig. 1,
respectively. The occupation probabilityrL(t) @14# is de-
fined as

rL~ t !5E
q52a524

q52b'0

dquc~q,t !u2. ~6!

When the wave packetc(q,t) is affected by the driving
force, the values ofuc(q,t)u2 and rL(t) present the results
of a controlled tunneling well. When the controlling system
is perturbed by a driving force of a different amplitude, i.e.,
as in ~a! where F0(t)522.5 cos(2pt/T), or in ~b! where
F0(t)525.8 cos(2pt/T), the efficiency of the tunnel control-

FIG. 1. An example of a tunnel controlling system. The driving
forceF0(t)52Fcos(2pt/T), the absolute square of the value of the
wave packetuc(q,t)u2 and the occupation probability ofuc(q,t)u2

in the left wellrL(t) are drawn, respectively, in the top, middle, and
bottom. The results of suppressed tunneling and enhanced tunneling
are shown at the time intervals~0,3! and ~3,6!, respectively. The
result is more evident in~b! than in ~a!. ~a! (T51/2 or
1, F52.5, 2b50.03, m51, \51, 2a58, V05500), ~b! (T
51/2 or 1, F55.8, 2b50.03, m51, \51, 2a58, V05500)
~in arbitrary units!.
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ling is better in the latter case. Thus, we first describe the
properties of theuc(q,t)u2 and therL(t) of Fig. 1~b!, and
then briefly describe those of Fig. 1~a!.

In Fig. 1~b!, at the time interval~0,3!, the main peak of
uc(q,t)u2 oscillates with a period 1/2 between the left side
potential wall on (q524) and the central potential barrier
on (q'0). Whereas, at the time interval~3,6!, the main peak
oscillates with a period 1 between the two potential walls on
(q564) of double wells. These results imply that at the
time interval ~0,3! most of the probability ofuc(q,t)u2 is
confined in the left well because the tunneling effect of
uc(q,t)u2 through the central potential barrier is extremely
minute, while at the time interval~3,6! most of the probabil-
ity of uc(q,t)u2 oscillates between both wells through the
central potential barrier because the tunneling effect of
uc(q,t)u2 through the central potential barrier is rather domi-
nant. The occupation probabilityrL(t) in the bottom of Fig.
1 helps us make a decision whether most of the probability
of uc(q,t)u2 remains within the left side well~ or right side
well! or oscillates between the two wells through the central
barrier. In Fig. 1~b!, at the time interval~0,3! the value of
rL(t) larger than 0.73 manifests the results of suppressed
tunneling ofc(q,t) through the central barrier. Whereas, at
the time interval~3,6!, the strong oscillation of the value of
rL(t) manifests the results of enhanced tunneling ofc(q,t)
through the central barrier.

The results of suppressed tunneling and enhanced tunnel-
ing presented in Fig. 1~a! are less evident than those pre-
sented in Fig. 1~b!. For example, at the time interval~0,3!,
the minimum value 0.54 ofrL(t) in Fig. 1~a! is smaller than
the minimum value 0.73 in Fig. 1~b!; in addition, at the time
interval ~3,6! the oscillatory motion of the value ofrL(t) is
less evident in Fig. 1~a!. These imply that the mechanism of
suppressed tunneling and enhanced tunneling may be more
dominant when the amplitude of the driving force is large.

In summary, if the system is driven byF0(t)
52Fcos@2pt/(1/2)#, most of the wave packet initially local-
ized in the left well oscillates within the left well of
the double wells with the same period as the driving
force. Whereas, if the system is driven byF0(t)
52Fcos@2pt/(1)#, most of the wave packet oscillates
through the central barrier within the double wells with the
same period as the driving force.

IV. FLOQUET ANALYSIS OF NONLINEAR RESONANCES

In this section, we analyze the mechanism of suppressed
tunneling and enhanced tunneling, i.e., the results of Sec. III
with the supporting aid of the Floquet analysis@23–25# of
the properties of nonlinear resonances@26–28# induced by
the driving force and the property of the dynamical symme-
try @10,29,30# of the Hamiltonian.

A. Tunnel suppression induced by a period-1/2 resonance

Most of the mechanism of suppressed tunneling at the
time interval ~0,3! presented in Fig. 1 can be explained by
the property of the dynamical quasidegeneracies@31,32# of
the nearly degenerated doublet states associated with the
stable fixed point of the period-1/2 resonance generated by
the driving force,F052Fcos@2pt/(1/2)#. Thus we will first

examine the interplay between the properties of the nearly
degenerated doublet state and period-1/2 nonlinear resonance
induced by the driving force ofF0522.5 cos(4pt).

When the classical system is driven by a sinusoidal force,
profoundly different aspects are manifested in the specifi-
cally considered portion of the Poincare´ surface of section
depending on whether it has the central potential barrier or
not, even though the thickness of the barrier is extremely
thin. With the central potential barrier, the islands of the
period-1/2 resonance are clearly manifested in the Poincare´
surface of section as in Fig. 2~b!, while, without the barrier,
the islands are not manifested as in Fig. 2~a!. If we observe
Husimi functions of some Floquet states, we also find the
trace of the period-1/2 resonance in the quantum system.
Husimi functions of Floquet states in Fig. 3~b! illustrate the
trace of the period-1/2 resonance. However, the trace is not
discovered in Fig. 3~a! as in Fig. 2~a!. Thex i ’s in Fig. 3 are
some of the Floquet states obtained by diagonalizing the
time-evolution unitary matrix of a wave function@33#, which
are sorted with respect to the expectation value of their mean
momentum, defined aŝpi&5A2m^x i uH0ux i&. The x i ’s in
Figs. 3~a! and 3~b! are calculated for the same value of the
system parameters as in Figs. 2~a! and 2~b!. The x40 and
x41 of Fig. 3~b! are, respectively, even and odd states of one
nearly degenerated doublet with respect to a parity operator
@10#, which best displays the property of two stable fixed
points of the period-1/2 resonance of Fig. 2~b!.

If the initial wave packet is composed of more than one
nearly degenerated doublet state, time evolution of the wave
packet may be very complicated and Fourier analysis needs
to be applied@12#. However, if the initial wave packet is
composed of only one nearly degenerated doublet state, the
tunneling time of the wave packet is then easily determined.

One purpose of this paper is to make the property of time
evolution of an initial wave packet follow the dynamical
property of the one nearly degenerated doublet, i.e., the pair
of x40 andx41, when the wave packet undergoes suppressed
tunneling by the driving force as in Fig. 1 because we can
suppress tunneling of the wave packet by controlling the
tunneling time of the doublet. Moreover, the property of the
doublet associated with the stable fixed points stands for the
global property of the two islands of period-1/2 resonance.
Therefore we first examine the time evolution of the wave
packet initially composed of the one nearly degenerated dou-

FIG. 2. Classical Poincare´ surface of section in a driven single
or double square-well system is drawn in~a! or ~b!, respectively.
The regular islands are clear in~b! but not in ~a!. ~a!
(T51/2, F52.5, 2b50.00, m51, \51, 2a58, V050), ~b!
(T51/2, F52.5, 2b50.03, m51, \51, 2a58, V05500).
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blet. Most of the motion of the wave packet undergoing sup-
pressed tunneling in Fig. 1 can be described by the dynami-
cal property of the linear combination of the one nearly
degenerated doublet, i.e., the pair ofx40 and x41. If we
choose a symmetric combination of these two Floquet states
as

cS~q,0!5
1

A2
@x40~q,t50!1x41~q,t50!#

[
1

A2
@x40~q!1x41~q!#, ~7!

the time evolution of thecS(q,nT) at times corresponding to
integral multiples of a periodT51/2 of the driving force is
given by @10,26#

cS~q,nT!5
1

A2
@x40~q!1x41~q!e2 i ~e412e40!nT/\#e2 i e40nT/\

~8!

and the time evolution of thecS(q,nT1T/2) at times corre-
sponding to integral multiples of the period plus one-half
period is given by@26#

cS~q,nT1T/2!5
1

A2
@x40~2q!

2x41~2q!e2 i ~e412e40!~nT1T/2!/\#

3e2 i e40~nT1T/2!/\. ~9!

This equation is ascribed to the property
xn(q,nT1T/2)56xn(2q,t50) which is derived from the
dynamical symmetry of the Hamiltonian. Namely, it is satis-
fied thatx40(q,t5T/2)5x40(2q,t50) for the even parity
statex40, andx41(q,t5T/2)52x41(2q,t50) for the odd
parity statex41 @12#. Since Eqs.~8! and ~9! outline most of
the mechanism related to the suppressed tunneling, let us
briefly examine the meaning represented by those equations.
The tunneling time ofcS(q,t), t5p/ue412e40u[p/De, is
derived from the conditionue412e40ut/\5p in the phase
factor of Eq.~8!. Therefore, the time evolution of the wave
packetcS(q,t) exhibits the oscillatory motion of coherent
tunneling between two symmetric KAM islands with a pe-
riod 2t.

Before going into detailed descriptions of the motion of
coherent tunneling, let us first examine the localization pat-
tern of the Husimi function of the linear combination of one
doublet, i.e.,cS(q,t50). As shown in Fig. 4, Husimi func-
tions ofcS(q,t50) are better localized in the left well with
the increase in thickness of the central potential barrier as
2b50.00,0.01,0.03,0.04. In this case, the pattern of one
KAM island of period-1/2 resonance generated in the left
well is displayed best when 2b50.04. This is ascribed to the
fact that the generating condition of the period-1/2 resonance
requires the role of the central potential barrier as shown in
Figs. 2 and 3.

FIG. 3. The Husimi functions of some Floquet states compared
with the classical Poincare´ surface of sections in Fig. 2. The trace of
regular islands of nonlinear resonance is shown in the Husimi func-
tions drawn in~b! but not in~a!. Thex40 andx41 of ~b! are, respec-
tively, even and odd states of one nearly degenerated doublet with
respect to a parity operator, which displays the property of two
stable fixed points of the period-1/2 resonance of Fig. 2~b!. The
Husimi functions are calculated for the same values of the system
parameters as in Figs. 2~a! and 2~b!.

FIG. 4. Observation of the localization of the Husimi function of
a wave packetcS(q,0) composed of the linear combination of one
nearly degenerated doublet associated withx40 andx41 in Fig. 3~b!.
When the amplitude of thickness of the central potential barrier is
increased as 2b50.00, 0.01, 0.03, and 0.04, the Husimi function
is more strongly localized about the stable fixed point of the reso-
nance in the left well. (T51/2, F52.5, m51, \51,
2a58, V05500).
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Taking a wave packet ofcS(q,t50) in case 2b50.03
drawn in Fig. 4 as an initial wave packet, we describe in
many ways the time evolution of thecS(q,t) in Fig. 5. The
tunneling time is given byt5p/De'p/0.114'27.5555T
from Fig. 7, in the case of the parameters of
F52.5, T51/2, 2b50.03. The oscillatory motion of co-
herent tunneling with a period (2t'55) is well manifested
in the plot of the occupation probability in the left well
rL(t) drawn in Fig. 5~c!. The minimum value ofrL(t) at
time (t5t'27.5) means that, as the result of coherent tun-
neling, most of the probability ofcS(q,t) is observed in the
right well of (0<q<4), while the maximum value of
rL(t) at time (t52t'55) means most of the probability of
cS(q,t) is again observed in the left well of (24<q<0).
At time (t5t/2'13.7) corresponding torL(t)50.5, each
well has half the probability ofcS(q,t).

For a more detailed description of the time evolution of

cS(q,t) when t50, t/2, t, and 2t, we present the time
evolution of ucS(q,t)u2 for short time intervals in Fig. 5~b!.
The motion of the wave packet ofucS(q,t)u2 can be de-
scribed by the fast oscillation with the same period 1/2 as the
driving force. The fast oscillation of the periodT51/2 cor-
responds to the classical oscillation of a particle within each
one of the double wells.

To elucidate the property of the time evolution of
cS(q,t), in Fig. 5~a!, we observe the Husimi functions of
cS(q,t) when they correspond to integral multiples of the
half period of the driving force. The motion of the Husimi
function at those times is described by Eqs.~8! and~9!. The
cS(q,nT1T) is not much different from
cS(q,nT)e

2 i e40T/\ in Fig. 5~a!, which can be confirmed by
Eq. ~8!, sinceT50.5!t/2'13.8. In fact, the Husimi func-
tion of cS(q,nT) is similar tocS(q,0)e

2 i e40nT/\ if the con-
dition (nT!t/2) is satisfied. Accordingly, in Fig. 5~a! the
Husimi functions at times (t50) and (t5T50.50) are
nearly identical. In this system, the total phase factor of

FIG. 5. Time evolution of a wave packet ofcS(q,t) chosen in
Fig. 4 when 2b50.03. Husimi functions ofcS(q,t) at selected
times corresponding to integral multiples of half period of the driv-
ing force are drawn in~a!, the time evolution ofucS(q,t)u2 for short
time intervals are drawn in~b!, and the occupation probability
in the left well rL(t) is drawn in~c!. The detailed descriptions are
given in the contents. (T51/2, F52.5, 2b50.03, m51, \51,
2a58, V05500).

FIG. 6. Observation of the localization of the Husimi function of
a wave packet ofcS(q,0) composed of the linear combination of
one nearly degenerated doublet associated withx40 and x41 in
Fig. 3~b!. When the amplitude of the driving force is increased
as F50.0, 0.5, 1.0, and 2.5, the Husimi function is more
strongly localized around the stable fixed point of the period-1/2
resonance in the left well. (T51/2, 2b50.03, m51, \51,
2a58, V05500).

FIG. 7. The change of the tunnel splittingDe of cS(q,0). The
tunnel splitting is reduced with the increase of the amplitude of
the thickness of the central barrier as in~a! or with the increase
of the amplitude of the driving forceF as in ~b!. ~a!
(T51/2, F52.5, m51, \51, 2a58, V05500), ~b! (T51/2,
2b50.03, m51, \51, 2a58, V05500).
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cS(q,t) has no significance. Therefore, for a short time, we
can treat the wave packet ofcS(q,nT) as an eigenstate. Or
rather, we can treat thecS(q,nT) as an eigenstate undergo-
ing suppressed tunneling, as in Fig. 1, if we consider the time
evolution of thecS(q,nT) only within a time interval much
shorter than tunneling time.

To be treated as an eigenstate, thecS(q,t) must have
either long tunneling timet or small tunnel splittingDe. As
the amplitude of the driving force is increased, the tunneling
time of the wave packetcS(q,0) is also increased. On the
one hand, good conditions for the degeneration of a doublet
implies strong localization ofc(q,0) in one of the double
wells. Therefore, Fig. 6 confirms it indirectly by revealing
this clearly, or rather, the localization of the wave packet
cS(q,0) is reinforced with the increase of the amplitude of
the driving force as it was reinforced with the increase of the
thickness of the central barrier. WhenF52.5, the wave
packet of cS(q,0) is most strongly localized around the
stable fixed point of period-1/2 resonance generated in the
left side well. This is verified because the generating condi-
tion of the period-1/2 resonance improves with the increase
of the amplitude of the driving force.

Figure 7~a! shows that the condition of the degeneration
of cS(q,0) is better satisfied when the central potential bar-
rier is thick. In Fig. 7, the filled circles represent the values
of the splitting of the doublet,De5ue412e40u, associated
with the stable fixed point of the period-1/2 resonance. In the
classical limit, period-1/2 resonance describes the properties
of a particle oscillating with a period 1/2 within only one of
the double wells. Therefore, in the quantum system, the role
of period-1/2 resonance is revealed when the blocking effect
of tunneling through the central potential barrier becomes
strong.

Figure 7~b! shows that the condition of the degeneration
of cS(q,0) is also better satisfied when the amplitude of the
driving force is increased. Tunneling times between resonant
islands usually increase smoothly with the increase of the
amplitude of the driving force, although tunneling times at
certain amplitudes of the driving force are erratic due to
chaos-induced avoided level crossing. For example, when
F54.2 and 5.4. However, in this system, suppression of tun-
neling occurs when the degenerated Floquet states are local-
ized and the dynamical quasidegeneracies arise due to non-
linear resonances. This result is different from that reported
by Lin and Ballentine@12# because of our concern for a
specific system whose central potential barrier is very thin.
Besides, the degenerated Floquet states are less affected by
avoided crossing because, in this paper, we treat the system
in the region of the amplitude of the driving forceF smaller
than the critical valueFc.12.5 associated with global chaos
by resonance overlap. That is, we treat a weakly chaotic
system. Therefore, in our system, with the increase of the
amplitude of the driving force, the global characteristics of
the system are decided by the enhanced effect of the central
potential barrier that was extremely weak in the absence of
the driving force.

Now, although this mechanism of suppressed tunneling is
similar to that observed by Grossmannet al. @14–17#, the
origins of the two mechanisms are somewhat different from
each other. Suppressed tunneling under the conditions of
Grossmannet al. is a very general behavior in the deep quan-

tum regime that can occur even in a two level system@34#.
The perturbation of the driving force on the classical motion
of the system is observed to have a minor effect@34#. The
case reported by Grossmannet al. is therefore an example of
intrinsic quantum control of tunneling in the deep quantum
regime. However, tunnel suppression in our model becomes
dominant in the classical regime rather than in the deep
quantum regime. That is, in our model, the mechanism of the
suppressed tunneling is ascribed to the increased effect of the
role of the central potential barrier as the amplitude of the
driving force is increased.

B. Tunnel enhancement induced by a period-1 resonance

The result of enhanced tunneling, i.e., the oscillatory mo-
tion of uc(q,t)u2 through the central barrier between the
double wells at the time interval~3,6! is outlined in Fig. 1. It
can be explained by the property of the stable fixed point of
the period-1 resonance generated through the central poten-
tial barrier by the driving force,F052Fcos(2pt/1).

When the system is driven byF0(t)522.5 cos(2pt/1),
the island of the period-1 resonance is clearly manifested in
the Poincare´ surface of section of Fig. 8~a! where the system
has no central potential barrier, i.e., 2b50.00. Whereas, it is
not manifested in the Poincare´ surface of section of Fig. 8~b!
where the system has a central potential barrier of thickness
2b50.03. To more clearly show the property of the period-1
resonance quantum mechanically, Husimi functions of some
Floquet states of the period-1 resonance are drawn in Figs.
9~a! and 9~b!, where they are calculated for the same value of
the system parameters as those used in Figs. 8~a! and 8~b!,
respectively. Without the central potential barrier, as in Fig.
9~a!, the Floquet states evidently manifest the trace of the
period-1 resonance@35#. On the one hand, although the
thickness of the central potential barrier is not zero as
2b50.03, the trace of the period-1 resonance is still retained
in Fig. 9~b!.

A single square-well system is an extreme case of a
double square-well system whose central potential barrier
has disappeared. In the single square-well system the genera-
tion of period-1 resonance is evident when the system is
driven by a sinusoidal force of a period 1@35#. The property
of the nonlinear resonance is gradually destroyed as the role
of the central potential barrier appears. For sufficiently thin

FIG. 8. Classical Poincare´ surface of section in a driven single
or double square-well system is drawn in~a! or ~b!, respectively.
The regular islands are clear in~a! but not in ~b!. ~a!
(T51, F52.5, 2b50.00, m51, \51, 2a58, V050), ~b!
(T51, F52.5, 2b50.03, m51, \51, 2a58, V05500).
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central potential barrier, the property of the Floquet state
pertaining to the stable fixed point of period-1 resonance is
slightly destructed and retained, because the property of the
stable fixed point described by a local miminum of the pen-
dunlum potential~or the potential related to the Mathieu
equation! @35,36# which is induced by the driving force, is
robust against any perturbation of the system parameters,
i.e., the thickness of the central potential barrier, the ampli-
tude of the driving force, and so on. As a consequence, in the
presence of the central potential barrier, we can observe the
properties of the period-1 resonance induced in the double
square-well system in Fig. 9~b!.

Another purpose of this paper is to make the property of
time evolution of an initial wave packetc(q,t) follow the
dynamical property of the one Floquet statecE(q,t) associ-
ated with the stable fixed point of period-1 resonance. As an
example, the state ofcE(q,t50) is given by thex42 of Fig.
9~b! if F52.5, 2b50.03. In this case, the property of the
state ofcE(q,t) associated with the stable fixed point also
stands for the global property of an island of period-1 reso-

nance. Thus we are mainly concerned with the time evolu-
tion of the wave packet ofcE(q,t) associated with the stable
fixed point. Figure 10 shows that the Husimi functions of the
one Floquet state,cE(q,t50), associated with the stable
fixed point of period-1 resonance, are less localized in the
left well with the increase of the thickness of the central
potential barrier as 2b50.00, 0.01, 0.03, 0.04. Conse-
quently, the pattern of the regular island of period-1 reso-
nance is presented most poorly by the Husimi function in
case 2b50.04. This is explained by the fact that the gener-
ating condition of the period-1 resonance becomes worse
with the increase of the role of tunnel blocking of the central
potential barrier. This also implies that the wave packet of
cE(q,t) still attributes to period-1 resonance making the
wave packet oscillate through the central barrier within
double-well potential only if the thickness of the central bar-
rier is thin. So, we can observe the oscillatory motion of a
wave packet that mimics the attribution of the stable fixed
point of period-1 resonance in the single square-well system.

Since the wave packet ofcE(q,t) is given by even parity
in our system, it satisfies the following dynamical symmetry
@10#:

cE~q,nT!5cE~q,t50!, ~10!

cE~q,nT1T/2!5cE~2q,t50!. ~11!

To clarify the properties of the dynamical symmetry of the
wave pakcet ofcE(q,t) in Fig. 11, we observe a variety of
motions of one wave packet obtained in case
2b50.03, T51 andF52.5. Thus, for the full description
of tunneling properties exhibited by a system with a dynami-
cal symmetry, we observe the Husimi function of the wave
packet ofcE(q,t) when they correspond to integral multiples
of the half period of the driving force in Fig. 11~a!. It con-
firms the validity of Eqs.~10! and ~11! which indicate that
cE(q,nT) is exactly equal tocE(q,0) andcE(q,nT1T/2) is
given by cE(2q,0). Figure 11~b! shows the detailed de-
scriptions of the dynamical motion of the wave packet of

FIG. 9. The Husimi functions of some Floquet states compared
with the classical Poincare´ surface of sections of Fig. 8. The shape
of tori of regular islands of nonlinear resonance shown on the Hu-
simi functions as drawn in~b! is evident, but its trace is still re-
tained on those in~a!. Thex43 of ~a! andx42 of ~b! are, respectively,
the Floquet states associated with the property of the stable fixed
points of the period-1 resonance of Fig. 8~a!. The Husimi functions
are calculated for the same values of the system parameters as in
Figs. 8~a! and 8~b!.

FIG. 10. Observation of the localization of the Husimi function
of a wave packet ofcE(q,0) associated withx42 in Fig. 9~b!. When
the amplitude of thickness of the central potential barrier is in-
creased as 2b50.00, 0.01, 0.03, and 0.04, the Husimi function is
more weakly localized around the stable fixed point of the period-1
resonance. (T51, F52.5, m51,\51, 2a58, V05500).
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cE(q,t). The motion of the wave packet can be described by
the fast oscillation having the same period 1 as the driving
force. The fast oscillation of a periodT51 can be under-
stood as having a relation to the classical oscillation of a
particle in the absence of the central barrier. To present the
property of tunneling more clearly, we plot the occupation

probability rL(t) in Fig. 11~c!. The oscillatory motion of
rL(t) with a period 1 continues without undergoing any dis-
sipation.

On the one hand, the wave packet ofcE(q,t50) becomes
more strongly localized about the stable fixed point of
period-1 resonance generated by increasing the amplitude of
the driving force though it was not shown in this paper. This
is revealed when the generating condition of the period-1
resonance is improved by the increase of the amplitude of
the driving force.

The tunneling rate of the wave packet ofcE(q,t) under-
going enhanced tunneling by the period-1 resonance is in-
versely proportional to the amplitude of the thickness of the
central potential and proportional to the amplitude of the
driving force. In other words, the amplitude of the oscillation
of rL(t) is reduced with the increase of the amplitude of the
thickness of the central potential barrier 2b. The amplitude
is raised with the increase of the amplitude of the driving
forceF. Since this tunneling is induced by the role of non-
linear resonances, the tunneling rate is enhanced by the in-
crease of the amplitude of the driving force.

In summary, the tunneling rate ofcE(q,t) is increased by
reinforcing the role of period-1 resonance. However, it is
different from the dc resonantly enhanced tunneling in quan-
tum wells which exhibits a drastic reduction of the tunneling
time in an asymmetric double-well system when the ground
state of the one well is aligned with an excited state of the
other well by applying a dc electric field@37–40#.

C. Application on tunnel controlling

So far, we have discussed the mechanism of suppressed
tunneling and enhanced tunneling. For the tunneling of a
wave packet ofc(q,t) to be effectively suppressed by the
period-1/2 resonance, this wave packet must resemble the
wave packet ofcS(q,t). On the one hand, for the tunneling
of a wave packet ofc(q,t) to be effectively enhanced by the
period-1 resonance, this wave packet needs to resemble the
wave packet ofcE(q,t). Henceforth, for optimum control of
the wave packet ofc(q,t), it is required that thecS(q,t) and
thecE(q,t) have similar forms.

To find a tendency on the change of the difference be-
tweencS(q,t50) andcE(q,t50) when the amplitude of
the driving force is increased, we present the shapes of the
cS(q,t50) and thecE(q,t50) for F52.5 andF55.8 in
Figs. 12~a! and 12~b!, respectively, wherecn’s are the coef-
ficients that represent the amplitude of the projection of a
wave packet ofcS(q,0) andcE(q,0) on the eigenfuction
un(q) of H0 , i.e., cS(q,0)5(cnun(q) or cE(q,0)
5(cnun(q). ThecS(q,0)’s and thecE(q,0)’s are presented
in the left and right side of Fig. 12. For theF52.5 of Fig.
12~a!, the difference between two wave packets is large. To
illustrate, the amplitudes ofc40,c42 of cS(q,0) and the am-
plitudes ofc39,c41 of cE(q,0) are large. Whereas, the am-
plitudes of c39,c41 of cS(q,0) and the amplitudes of
c41,c42 of cE(q,0) are not large. Therefore, the amplitude
^cS(q,0)ucE(q,0)&50.62 is considerably smaller than 1.
But, for theF55.8 of Fig. 12~b!, the difference between two
wave packets is greatly reduced. For example, the ampli-
tudes ofc39,c41,c43 of the cS(q,t) and thecE(q,0) are si-
multaneously large. This shows the amplitude

FIG. 11. Time evolution of a wave packet ofcE(q,t) chosen in
Fig. 10 in case 2b50.03. Husimi functions ofcE(q,t) at selected
times corresponding to integral multiples of the half period of the
driving force are drawn in~a!. The time evolution ofucE(q,t)u2 for
short time intervals is drawn in~b!. The occupation probability in
the left well rL(t) is drawn in ~c!. The detailed descriptions are
given in the contents. (T51, F52.5, 2b50.03, m51,
\51, 2a58, V05500).
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^cS(q,0)ucE(q,0)&50.81 to also be large. Consequently, the
resemblance between two wave packets is even greater in the
large amplitude of the drving forceF55.8. In addition, the
tunneling timet of cS(q,0) is longer in the case where
F55.8. In other words, the tunnel splittingDe is smaller as
Fig. 7~b! illustrates. So, if we want to control the tunneling
of a wave packet ofc(q,t) as in Fig. 1, we must choose the
wave packet ofc(q,t50) by the linear combination of
cS(q,0) and cE(q,0), i.e., c(q,t50)5@cS(q,0)
1cE(q,0)#/A2. Then, as observed in Fig. 1, tunnel control-
ling is more effective in the case whereF55.8 rather than
whenF52.5.

Now, the amplitude of tunnel splitting associated with
cS(q,t) may be large due to chaos-induced avoided level

crossing@13# around a certain amplitude of the driving force
of F54.2 or 5.6 as shown in Fig. 7~b!. Then, the localization
of the doublet state may be broken. The localization of the
eigenstate of enhanced tunneling,cE(q,t), may also be bro-
ken at a certain amplitude of the driving force due to chaos-
induced avoided level crossing. With the increase of the am-
plitude of the driving force, the occurring frequency of this
avoided level crossing increases as the chaotic region in the
Poincare´ surface of section grows. As a result, we cannot
simply choose the large amplitude of the driving force to
control the tunneling of the wave packet. We have to prop-
erly choose the system parameters that are unrelated to the
avoided level crossing.

V. CONCLUSIONS

In this paper, we studied that the generation of nonlinear
resonance is responsible for the change of tunneling in a
driven double square-well system when its central potential
barrier is very tall and very thin. When a classical nonlinear
system is perturbed by a sinusoidal driving force, the system
manifests many patterns of resonance islands and conse-
quently it becomes more stable. This same mechanism was
observed in our model system associated with quantum tun-
neling. That is, without the driving force, the generating con-
dition of the period-1/2 resonance is poor due to the tunnel-
ing effect through the central potential barrier, and the
generating condition of the period-1 resonance is also poor
as a result of the blocking effect of tunneling through the
central potential barrier. But, if our system is perturbed by
the driving force, the traces of nonlinear resonances are
manifested, and consequently the tunneling rate through the
central potential barrier is changed. We observed that the
direction of change of the tunneling rate is the same as that
of the good condition for nonlinear resonance. Therefore, the
generation of nonlinear resonance also plays an important
role in a quantum tunneling system without classical coun-
terpart. In particular, we studied the properties of the Floquet
states associated with the stable fixed point that stands for
the regular island of a nonlinear resonance and showed the
possibility of tunnel controlling by changing the properties.
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