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Suppression or enhancement of quantum tunneling by a nonlinear resonance induced
in a driven double-well system
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The effect of a periodic driving force on coherent tunneling of a driven double square-well system, espe-
cially when its central potential barrier is very tall and very thin, is investigated. The suppression or enhance-
ment of the tunneling of a wave packet properly chosen in the double-well system may be achieved by a
judicious choice of the period of a driving force, i.e., by a particular choice of the generating condition of a
nonlinear resonance exhibiting a desirable property. We analyze this mechanism by exploiting both the prop-
erties of a dynamical symmetry of the Hamiltonian and the localized properties of Floquet states induced by the
nonlinear resonancgS1063-651X96)06807-9

PACS numbes): 05.45+b, 73.40.Gk, 47.52:j, 03.65—~w

I. INTRODUCTION ties of enhancement and suppression of tunneling have been
applied. Bavli and Metii18] showed that a semi-infinite
The study of quantum dynamical tunneling for double-laser pulse can be used to localize an electron in one of the
well systems in the presence of a periodic driving force is avells of a double-well potential with the suppression mecha-
subject currently under intense investigation. The applicatioffiSM Of tunneling in the deep quantum regime. An alterna-

o : ve way of suppressing tunneling is to destroy the discrete
of a periodic driving force to the tunneling systems generategyrnmetry itself. Farrelly and Milligafil9] also revealed this

a variety of complex behgwo_rs. As a .result, the mterplayby combining the mechanism with the result studied by Lin
between chaos and tunneling is the subject of recent work by Ballentine, that is to say, the control and suppression of

many researchefd—7]. A wave packet initially centered on ynneling is achieved by driving the system with two fields
one of the symmetric Kolmogorov-Arnold-Mos@¢AM ) is-  whose frequencies are a 1:2 ratio.

lands can tunnel through the chaotic sea to reach the other |n this paper, we will show an example of a control sys-
KAM island, and then return to the original island. This kind tem of tunneling which uses a different mechanism from the
of quantum dynamical tunneling between the disconnectednes described above and then study its properties in a not so
symmetric KAM islands first studied by Davis and Heller deep quantum regime and weakly chaotic regime. We will
[8], has been under recent study. discuss how to select an initial wave packet whose coherent
Now, it was discovered by Lin and Ballentifi@] that for ~ tunneling is capable of being controlled by an appropriate
certain values of the driving force parameters, the tunnelinghoice of a period of the driving force in a driven double
rate can be enhanced by many orders of magnitude comparéguare-well system when its central barrier is very tall and
with the undriven rate. Perdd0] pointed out that the ob- Very thin. Patterns of regular islands in the Poincsugface
served tunneling is due to a dynamical symmetry of theof section regt on the period of the dn_vmg force, _the ampli-
Hamiltonian, which remains invariant under combined Spa_tude of the driving forcg, and other vgrlables. In this case, the
tial reflection and time translation. However, the dynamicalP"oPerty of a regular island, especially the property of a
symmetry cannot sufficiently explain why the Floguet statestaPle fixed point of a regular island, is well described by the
should, in some cases but not in others, be approximatel! roper_ty of the corresponding F‘O”"”ear_ resonance. A_ccord-
localized in the regular regions of classical phase sphtk gly, it we conf[r(_)ll the generating condition of a nonlinear
It might be explained by studying the characteristics of non-esonance exh|b|t_|ng the property that suppresses or en-
linear resonances induced by a periodic driving force. In th@arjces the tunneling of the system, we can control the tun-
case, Lin and Ballentingl2] found that the tunneling times heling Qf the system. .
of the localized Floquet state between the resonant islandé Section |l begins with a description of our model system.

become rather erratic with the increase of the amplitude o ection |l examir_nes the properties of a “%'”.”e' controllling
System by changing the period of the driving force in a

nism of chaos-induced avoided level crossing between thg.OUbIe square-well system._Sectlon IV analyzes the mECha'
Floquet states associated with the chaotic part of phase spa@gm .Of suppresseq tunneling gnd enhanced tunneling 'by
and a member of the quasidegenerate doUtigl On the Stuqulng the properties of dynamical symmetry of the Ha_mll-
other hand, it was independently shown in the deep quantu nian and Iocal!zed Floquet states mduce_d by a nonlinear
regime by Grossmanet al. [14—17 that the driving param- resonance. Section V draws some concluding remarks.
eters can also be adjusted to reduce the tunneling rate to zero.
The total inhibition of the tunneling occurs at the exact
crossing of the two levels for the even and the odd Floguet We study dynamical properties of a localized wave packet
states. affected by a coherent driving foréecos(2+t/T) in a double

To control tunneling properties of systems, these propersquare-well potentia¥/(q),

Il. SYSTEM
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V(g)=4 0, for b<|g|<a, (o

25H i
Vo, for |gl=b. Fo(t)/\/V\/\/\/\/W\ F)
2.5

To observe the motion of the wave packet and obtain the
time-evolution unitary matrix of the wave packet, we inte-
grate numerically the time-dependent Salingier equation,

dc,(t 2t )
i 400 > FC‘“(l)<unlqlum>cm<t>e'<EnEm“”a
dt m=1 T

2

which is derived from the HamiltoniaH of the system,

h? 92 2t 2t 108 10
H= —— +V(q)+gFco§ — |=Hy+qFco Eah

2 T : | ,
O Cap LY

and the total wave function  ¢(q,t) 0.0 - — 00
=3 —1Cn(Dun(q)e Bt where theE, and theu,(q) are 0 t
the nth eigenvalue and thieth eigenfunction oH, respec- (a) (b)
tively. In the absence of the driving force, we get numeri-
cally the eigenvalud&, and the eigenfunction,, presented
by a sine or hyperbolic sine function. The parameters used ipor
this paper are the mags=1, the Planck constarit=1, the
p_Otem'al width a:& the height of the Cemral_ pOtem'_al bar- in the left wellp, (t) are drawn, respectively, in the top, middle, and
ner VO:_SOO' the V\,”(_jth of the central poteptlal barrleb,.2 bottom. The results of suppressed tunneling and enhanced tunneling
the amplitude of driving forc&, and the period of the driv-  are shown at the time interval®,3 and (3,6), respectively. The
ing forceT. result is more evident in(b) than in (@. (@ (T=1/2 or
In this caseVy~Eg;, and the mean energy of eigenstates1, F=2.5 2=0.03, u=1, 4=1, 2a=8, V,=500), (b) (T

or Floquet states, which we will discuss in this paper, iS=1/2 or 1, F=5.8, 2=0.03, u=1, A=1, 2a=8, V,=500)
approximately~E,q. On the one hand, the diffusive tunnel- (in arbitrary units.
ing from one well to the other by global chaos is possible
when F>100, but we only treat our system whén<6. . AN EXAMPLE OF THE TUNNEL CONTROLLING
Period-1 resonance in the single square-well system dis- SYSTEM
cussed in Sec. IV B undergoes global chaos by resonance
overlap when the amplitude of the driving force is greate
than the critical valud=.~6.3, while the critical value of
period-1/2 resonance in the double square-well system di
cussed in Sec. IV A is approximately.=12.5. Because the
f‘hape qf the potgntlal In our system 1S stiffer than that of th 0,3, and enhanced tunneling at the time inter¢@&b), as

armonic potential, chaotic properties are observed mor

L : . e period of the driving forceFy(t)=—Fcos(2t/T) is
g;ii\sl:lri/gl?oiéoi\lgesrmean”ergy region when the amplitude of thechanged fromilr'=1/2 to T=1. The driving forceFy(t), the

2
To compare the properties of a quantum resonance witf'ﬁ‘bSOIUte square of the value of the wave pagket,t)|”,

. g 2 -
those of a classical resonance manifested in the Poinca d the OCCUpat'(.m probablllty_¢tb(q,t)| in the left wgll
surface of section, we compute the Husimi functioan(t) are drawn in the top, middle and bottom of Fig. 1,

Pn(do,po,t) of a wave packets(q,t) defined a§20-22 ][iense%e;tsively. The occupation probabilipy (t) [14] is de-

FIG. 1. An example of a tunnel controlling system. The driving
ceFy(t)= —Fcos(2t/T), the absolute square of the value of the
wave packet(q,t)|? and the occupation probability ¢f(q,t)|?

] Figure 1 shows a possibility that the tunneling of an ini-
tially localized wave packef(q,t) is capable of being con-
trolled by the change of the period of a sinusoidal driving
orce in a tunnel controlling system. Or rather, the wave
inacket undergoes suppressed tunneling at the time interval

~0

1 5 gq=-b )
Pu(do.Po.)= 5Ky p(@ W@ (@) pL(t)= fq_a_4dql¢<q,t>| : (6)

1/4 2 When the wave packef/(q,t) is affected by the driving
exr{i Pod M , (5) force, the values ofy(q,t)|* and p (t) present the results
h 2h of a controlled tunneling well. When the controlling system
is perturbed by a driving force of a different amplitude, i.e.,
wherex is the coarse graining parameter. For all the Husimias in (a) where Fy(t)=—2.5cos(2it/T), or in (b) where
functions displayed in this papet=1.5. Fo(t)= —5.8 cos(2it/T), the efficiency of the tunnel control-

K
(qu,po(q):[h_
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ling is better in the latter case. Thus, we first describe the
properties of thd(q,t)|? and thep,(t) of Fig. 1(b), and
then briefly describe those of Fig(a).

In Fig. 1(b), at the time interval0,3), the main peak of
|4(q,1)|? oscillates with a period 1/2 between the left side
potential wall on {=—4) and the central potential barrier
on (g=~0). Whereas, at the time interv@,6), the main peak
oscillates with a period 1 between the two potential walls on
(q==4) of double wells. These results imply that at the
time interval (0,3) most of the probability ofl#(q,t)|? is
confined in the left well because the tunneling effect of
|z,/;_(q,t)|2 through the central potential barrier is extremely £ 2 classical Poincarsurface of section in a driven single
minute, while at the time intervaB,6) most of the probabil- o gouble square-well system is drawn (@ or (b), respectively.

ity of |¢(q,t)|* oscillates between both wells through the The regular islands are clear ib) but not in (). (a)
central potential barrier because the tunneling effect of{t=1/2, F=2.5 2=0.00, =1, #=1, 2a=8, V,=0), (b)
|4(q,t)|? through the central potential barrier is rather domi-(T=1/2, F=2.5, 2=0.03, u=1, 4=1, 2a=8, V,=500).
nant. The occupation probabiliy; (t) in the bottom of Fig.
1 helps us make a decision whether most of the probabilitexamine the interplay between the properties of the nearly
of |¢(q,t)|? remains within the left side well or right side  degenerated doublet state and period-1/2 nonlinear resonance
well) or oscillates between the two wells through the centrainduced by the driving force dof o= — 2.5 cos(4t).
barrier. In Fig. 1b), at the time interval0,3 the value of When the classical system is driven by a sinusoidal force,
pL(t) larger than 0.73 manifests the results of suppressegrofoundly different aspects are manifested in the specifi-
tunneling of¢(q,t) through the central barrier. Whereas, atcally considered portion of the Poincaserface of section
the time interval(3,6), the strong oscillation of the value of depending on whether it has the central potential barrier or
p.(t) manifests the results of enhanced tunnelings0f,t)  not, even though the thickness of the barrier is extremely
through the central barrier. thin. With the central potential barrier, the islands of the
The results of suppressed tunneling and enhanced tunngleriod-1/2 resonance are clearly manifested in the Poincare
ing presented in Fig. (&) are less evident than those pre- surface of section as in Fig(l®, while, without the barrier,
sented in Fig. (b). For example, at the time intervéd,3),  the islands are not manifested as in Fi¢g)2If we observe
the minimum value 0.54 g, (t) in Fig. 1(a) is smaller than  Husimi functions of some Floquet states, we also find the
the minimum value 0.73 in Fig.(); in addition, at the time  trace of the period-1/2 resonance in the quantum system.
interval (3,6) the oscillatory motion of the value gf_(t) is  Husimi functions of Floquet states in Fig( illustrate the
less evident in Fig. ). These imply that the mechanism of trace of the period-1/2 resonance. However, the trace is not
suppressed tunneling and enhanced tunneling may be modiscovered in Fig. @) as in Fig. Za). The x;’s in Fig. 3 are
dominant when the amplitude of the driving force is large. some of the Floquet states obtained by diagonalizing the
In summary, if the system is driven byF(t) time-evolution unitary matrix of a wave functi¢83], which
= —Fcog2=t/(1/2)], most of the wave packet initially local- are sorted with respect to the expectation value of their mean
ized in the left well oscillates within the left well of momentum, defined a&p;)=v2u{xi|Holxi). The xi’s in
the double wells with the same period as the drivingFigs. 3a) and 3b) are calculated for the same value of the
force. Whereas, if the system is driven bFo(t)  system parameters as in FiggaRand 2b). The x4 and
=—Fco42#t/(1)], most of the wave packet oscillates y,, of Fig. 3b) are, respectively, even and odd states of one
through the central barrier within the double wells with the nearly degenerated doublet with respect to a parity operator
same period as the driving force. [10], which best displays the property of two stable fixed
points of the period-1/2 resonance of FigbR
If the initial wave packet is composed of more than one
nearly degenerated doublet state, time evolution of the wave
In this section, we analyze the mechanism of suppresseacket may be very complicated and Fourier analysis needs
tunneling and enhanced tunneling, i.e., the results of Sec. Ililo be applied[12]. However, if the initial wave packet is
with the supporting aid of the Floquet analy§3—25 of = composed of only one nearly degenerated doublet state, the
the properties of nonlinear resonand@6-2§ induced by tunneling time of the wave packet is then easily determined.
the driving force and the property of the dynamical symme- One purpose of this paper is to make the property of time
try [10,29,3Q of the Hamiltonian. evolution of an initial wave packet follow the dynamical
property of the one nearly degenerated doublet, i.e., the pair
of x40 and x4, When the wave packet undergoes suppressed
tunneling by the driving force as in Fig. 1 because we can
Most of the mechanism of suppressed tunneling at theuppress tunneling of the wave packet by controlling the
time interval (0,3) presented in Fig. 1 can be explained by tunneling time of the doublet. Moreover, the property of the
the property of the dynamical quasidegenera¢®is32 of  doublet associated with the stable fixed points stands for the
the nearly degenerated doublet states associated with tlgdobal property of the two islands of period-1/2 resonance.
stable fixed point of the period-1/2 resonance generated byherefore we first examine the time evolution of the wave
the driving force F,= —Fcog2#t/(1/2)]. Thus we will first  packet initially composed of the one nearly degenerated dou-

151
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(b)

IV. FLOQUET ANALYSIS OF NONLINEAR RESONANCES

A. Tunnel suppression induced by a period-1/2 resonance
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151 T Ml 1S THan FIG. 4. Observation of the localization of the Husimi function of
P == === ] a wave packetys(q,0) composed of the linear combination of one
i T 0 nearly degenerated doublet associated wighand y,; in Fig. 3(b).
Pr 1 Pr 1 When the amplitude of thickness of the central potential barrier is
] ] increased ast2=0.00, 0.01, 0.03, and 0.04, the Husimi function
asal s is more strongly localized about the stable fixed point of the reso-
5 40|75 X i = = = =
e e (Xao| 75% X nance in the left well T=1/2, F=25, u=1, =1,
== | 2a=8, V,=500).
P Pr . ] ]
- : and the time evolution of thé5(q,n T+ T/2) at times corre-
7 (= Tsal sponding to integral multiples of the period plus one-half
T i "4 —— q = period is given by{26]

1
FIG. 3. The Husimi functions of some Floquet states compared Ys(@nT+T72) \/E[X“O( a)
with the classical Poincamurface of sections in Fig. 2. The trace of
regular islands of nonlinear resonance is shown in the Husimi func- — Xa1(
tions drawn in(b) but not in(a). The x40 and x4, of (b) are, respec- < @ ieadn T+ T2
tively, even and odd states of one nearly degenerated doublet with '
respect to a parity operator, which displays the property of two
stable fixed points of the period-1/2 resonance of Figp.2The  This  equation is ascribed to the property
Husimi functions are calculated for the same values of the systeny,(q,nT+T/2)= = x,(—q,t=0) which is derived from the
parameters as in Figs(&@ and 2b). dynamical symmetry of the Hamiltonian. Namely, it is satis-
fied that x4o(q,t=T/2)= y4o( —g,t=0) for the even parity
blet. Most of the motion of the wave packet undergoing sup-state x40, and x41(q,t=T/2)=— x41(—q,t=0) for the odd
pressed tunneling in Fig. 1 can be described by the dynamparity statey,; [12]. Since Eqs(8) and (9) outline most of
cal property of the linear combination of the one nearlythe mechanism related to the suppressed tunneling, let us
degenerated doublet, i.e., the pair pfy and x4;. If we  briefly examine the meaning represented by those equations.
choose a symmetric combination of these two Floquet stateBhe tunneling time ofisg(q,t), 7=m/|€41— €ag=m/A¥€, is
as derived from the conditioe,— €40 7/ =7 in the phase
factor of Eq.(8). Therefore, the time evolution of the wave
1 packets(qg,t) exhibits the oscillatory motion of coherent
¥5(9,0)= E[MO(q't:oHX“l(q’t:O)] tunneling between two symmetric KAM islands with a pe-
riod 2.
1 Before going into detailed descriptions of the motion of
= E[X4O(Q)+X41(Q)]' (7)  coherent tunneling, let us first examine the localization pat-
tern of the Husimi function of the linear combination of one
doublet, i.e.,y5(q,t=0). As shown in Fig. 4, Husimi func-
the time evolution of theg(q,nT) at times corresponding to tions of ¢/5(q,t=0) are better localized in the left well with
integral multiples of a period=1/2 of the driving force is the increase in thickness of the central potential barrier as
given by[10,26| 2b=0.00,0.01,0.03,0.04. In this case, the pattern of one
KAM island of period-1/2 resonance generated in the left
well is displayed best whentiz=0.04. This is ascribed to the
Je(q,nT) = i[)(4o(q}+)(41(q}e*i(é4f can T/ ]g i can T/ fact t_hat the generating condition of th_e perioc_j-1/2 resonance
NA requires the role of the central potential barrier as shown in
(8) Figs. 2 and 3.

— q)e~(ear a0 (N T I/

(©)
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FIG. 6. Observation of the localization of the Husimi function of
a wave packet of/5(q,0) composed of the linear combination of
one nearly degenerated doublet associated with and x4, in
Fig. 3(b). When the amplitude of the driving force is increased
as F=0.0, 0.5, 1.0, and 2.5, the Husimi function is more
strongly localized around the stable fixed point of the period-1/2
resonance in the left well. T(=1/2, 2b=0.03, u=1, A=1,
2a=8, V,=500).

¥s(q,t) whent=0, 7/2, 7, and 2, we present the time
evolution of|¢g(q,t)|? for short time intervals in Fig. ®).

The motion of the wave packet dfs5(q,t)|? can be de-
scribed by the fast oscillation with the same period 1/2 as the

1.0 - - y - driving force. The fast oscillation of the peridd=1/2 cor-
" | responds to the classical oscillation of a particle within each
P | one of the double wells.
- - To elucidate the property of the time evolution of
95 ' ' P ' S0 ¥s(q,t), in Fig. 5a), we observe the Husimi functions of

¥5(q,t) when they correspond to integral multiples of the

(© half period of the driving force. The motion of the Husimi
function at those times is described by E@®.and(9). The

FIG. 5. Time evolution of a wave packet gf(q,t) chosen in  ¥s(Q,nT+T) is not much different  from
; - - —TeggTh i : .
Fig. 4 when »=0.03. Husimi functions ofiy<(q,t) at selected ¥s(q,nT)e 40" in Fig. 5a), which can be confirmed by
times corresponding to integral multiples of half period of the driv- Eq. (8), sinceT=0.5<7/2~13.8. In fact, the Husimi func-
ing force are drawn iffa), the time evolution ofy5(q,t)|? for short  tion of <(q,nT) is similar to ¢5(q,0)e <40 T% if the con-
time intervals are drawn irtb), and the occupation probability dition (nT<17/2) is satisfied. Accordingly, in Fig.(8) the
in the left well p (t) is drawn in(c). The detailed descriptions are Hysimi functions at times t0) and (=T=0.50) are

given in the contents. T=1/2, F=2.5, 2=0.03, u=1, =1,  pearly identical. In this system, the total phase factor of
2a=8, Vy=500).

Taking a wave packet ofy5(q,t=0) in case »=0.03
drawn in Fig. 4 as an initial wave packet, we describe in
many ways the time evolution of thgg(q,t) in Fig. 5. The
tunneling time is given byr=m/A e~ 7/0.114~27.5=55T S 1 M 1
from Fig. 7, in the case of the parameters of Ae . Ae I ~
F=2.5, T=1/2, 20=0.03. The oscillatory motion of co- . N, e
herent tunneling with a period ¢255) is well manifested . I e s
in the plot of the occupation probability in the left well 0~°800- PRI S 1] S
pL(t) drawn in Fig. %c). The minimum value ofp, (t) at )
time (t=7~27.5) means that, as the result of coherent tun- (a) (b)
neling, most of the probability ofs5(q,t) is observed in the
right well of (0<=g=4), while the maximum value of g 7. The change of the tunnel splittidge of y(q,0). The
pi(t) at time ¢=27~55) means most of the probability of ynnel spiitting is reduced with the increase of the amplitude of
#5(q,t) is again observed in the left well of{4<q=<0). the thickness of the central barrier as(® or with the increase
At time (t=7/2~13.7) corresponding tp, (t)=0.5, each of the amplitude of the driving forceF as in (b). (a
well has half the probability of/5(q,t). (T=1/2, F=25, u=1, A=1, 2a=8, V,=500), (b) (T=1/2,

For a more detailed description of the time evolution of2b=0.03, u=1, A=1, 2a=8, V;=500).

025 T T T T T T T 025 T
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¥5(g,t) has no significance. Therefore, for a short time, we
can treat the wave packet gig(q,nT) as an eigenstate. Or
rather, we can treat the¢5(q,nT) as an eigenstate undergo-
ing suppressed tunneling, as in Fig. 1, if we consider the time
evolution of theigg(g,nT) only within a time interval much Pl
shorter than tunneling time. I
To be treated as an eigenstate, thgq,t) must have

TS T

either long tunneling time or small tunnel splittingAe. As —7.51t_4 LT h 4
the amplitude of the driving force is increased, the tunneling q q
time of the wave packeis(q,0) is also increased. On the (a) (b)

one hand, good conditions for the degeneration of a doublet
implies strong localization off(q,0) in one of the double
W(.:"”S' Therefore, Fig. 6 conflrm_s It'lndlrectly by revealing or double square-well system is drawn (@ or (b), respectively.
this clearly, or rather, the localization of the wave packetThe regular islands are clear ifa) but not in (b). (3
5(q,0) is reinforced with the increase of the amplitude of(T:1 F=25, 2=000, u=1, i=1, 2a=8, Vy=0) ' (b)
the driving force as it was reinforced with the increase of the(T:1: F=2.5: 23:0.03: lej ﬁ:1: 2a=8: V0=50b).
thickness of the central barrier. Whdn=2.5, the wave

packet of ¢i5(q,0) is most strongly localized around the ym regime that can occur even in a two level sysfadi.

stablg fixed point qf per!c_Jd—llz resonance genera}ted in th%e perturbation of the driving force on the classical motion

left side well. This is verified because the generating condiyt the system is observed to have a minor eff@]. The

tion of the perlod-llz resonance improves with the increasgge reported by Grossmaenal. is therefore an example of

of the amplitude of the driving force. _intrinsic quantum control of tunneling in the deep quantum
Figure 7a) shows that the condition of the degeneration egime. However, tunnel suppression in our model becomes

of ¢5(q,0) is better satisfied when the central potential bargominant in the classical regime rather than in the deep

rier is thick. In Fig. 7, the filled circles represent the Va|UeSquantum regime. That is, in our model, the mechanism of the

of the splitting of the doubletAe=|es— €4, associated gyppressed tunneling is ascribed to the increased effect of the

with the stable fixed point of the period-1/2 resonance. In thggle of the central potential barrier as the amplitude of the
classical limit, period-1/2 resonance describes the propertiegving force is increased.

of a particle oscillating with a period 1/2 within only one of
the double wells. Therefore, in the quantum system, the role
of period-1/2 resonance is revealed when the blocking effect
of tunneling through the central potential barrier becomes The result of enhanced tunneling, i.e., the oscillatory mo-
strong. tion of |(q,t)|? through the central barrier between the
Figure 7b) shows that the condition of the degenerationdouble wells at the time interv#B, 6) is outlined in Fig. 1. It
of 45(q,0) is also better satisfied when the amplitude of thecan be explained by the property of the stable fixed point of
driving force is increased. Tunneling times between resonarthe period-1 resonance generated through the central poten-
islands usually increase smoothly with the increase of thdial barrier by the driving forcef o= —Fcos(2nt/1).
amplitude of the driving force, although tunneling times at When the system is driven blyy(t) = —2.5cos(zit/1),
certain amplitudes of the driving force are erratic due tothe island of the period-1 resonance is clearly manifested in
chaos-induced avoided level crossing. For example, whethe Poincareurface of section of Fig.(8) where the system
F=4.2 and 5.4. However, in this system, suppression of tunhas no central potential barrier, i.elh20.00. Whereas, it is
neling occurs when the degenerated Floquet states are localet manifested in the Poincaseirface of section of Fig.(B)
ized and the dynamical quasidegeneracies arise due to nowhere the system has a central potential barrier of thickness
linear resonances. This result is different from that reporte@b=0.03. To more clearly show the property of the period-1
by Lin and Ballentine[12] because of our concern for a resonance quantum mechanically, Husimi functions of some
specific system whose central potential barrier is very thinFloquet states of the period-1 resonance are drawn in Figs.
Besides, the degenerated Floquet states are less affected () and 9b), where they are calculated for the same value of
avoided crossing because, in this paper, we treat the systetine system parameters as those used in Figs.ahd &b),
in the region of the amplitude of the driving for€esmaller  respectively. Without the central potential barrier, as in Fig.
than the critical valué .=12.5 associated with global chaos 9(a), the Floquet states evidently manifest the trace of the
by resonance overlap. That is, we treat a weakly chaotiperiod-1 resonancg¢35]. On the one hand, although the
system. Therefore, in our system, with the increase of th¢hickness of the central potential barrier is not zero as
amplitude of the driving force, the global characteristics of2b=0.03, the trace of the period-1 resonance is still retained
the system are decided by the enhanced effect of the centrial Fig. 9Ab).
potential barrier that was extremely weak in the absence of A single square-well system is an extreme case of a
the driving force. double square-well system whose central potential barrier
Now, although this mechanism of suppressed tunneling i®as disappeared. In the single square-well system the genera-
similar to that observed by Grossmaenal. [14—17, the tion of period-1 resonance is evident when the system is
origins of the two mechanisms are somewhat different frondriven by a sinusoidal force of a period 35]. The property
each other. Suppressed tunneling under the conditions af the nonlinear resonance is gradually destroyed as the role
Grossmantet al.is a very general behavior in the deep quan-of the central potential barrier appears. For sufficiently thin

FIG. 8. Classical Poincarsurface of section in a driven single

B. Tunnel enhancement induced by a period-1 resonance
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FIG. 10. Observation of the localization of the Husimi function

e T [X39 ] 7.Sn§ T [Xa2] of a wave packet ofiz(q,0) associated witly 4, in Fig. 9(b). When
1 the amplitude of thickness of the central potential barrier is in-
creased ast?=0.00, 0.01, 0.03, and 0.04, the Husimi function is

Pt i Pr 1 more weakly localized around the stable fixed point of the period-1
r 1 r resonance. =1, F=2.5, u=14=1, 2a=8, V,=500).
= | =
K| TSR . . .
151 0 Ma|se| X3 nance. Thus we are mainly concerned with the time evolu-

tion of the wave packet of=(q,t) associated with the stable
fixed point. Figure 10 shows that the Husimi functions of the

P Pr one Floquet statey(q,t=0), associated with the stable
| 1T . fixed point of period-1 resonance, are less localized in the
-7.51:@ T gl ] left well with the increase of the thickness of the central
q - q potential barrier as 2=0.00, 0.01, 0.03, 0.04. Conse-
(b) quently, the pattern of the regular island of period-1 reso-

nance is presented most poorly by the Husimi function in
case b=0.04. This is explained by the fact that the gener-
c£1ting condition of the period-1 resonance becomes worse
with the increase of the role of tunnel blocking of the central
potential barrier. This also implies that the wave packet of
Ye(q,t) still attributes to period-1 resonance making the
the Floguet states associated with the property of the stable fixe ave packet osc[llate th_rough t.he central barrier within
points of the period-1 resonance of FigaB The Husimi functions _out_)Ie-vyeII potential only if the thICkness. of the Cem.ral bar-
are calculated for the same values of the system parameters as er1s thin. So, we (,:ar_] observe t,he QSCIIIatory motion ,Of a
Figs. 8a) and 8b). wave packet that mimics the attribution of the stable fixed
point of period-1 resonance in the single square-well system.

central potential barrier, the property of the Floguet state Since the wave packet afe(q,t) is given by even parity
pertaining to the stable fixed point of period-1 resonance 4" Our system, it satisfies the following dynamical symmetry
slightly destructed and retained, because the property of tHdOl:
stable fixed point described by a local miminum of the pen-
dunlum potential(or the potential related to the Mathieu
equation [35,36 which is induced by the driving force, is
robust against any perturbation of the system parameters, Ye(q,nT+T/2)= ¢e(—q,t=0). (13)
i.e., the thickness of the central potential barrier, the ampli-
tude of the driving force, and so on. As a consequence, in th&o clarify the properties of the dynamical symmetry of the
presence of the central potential barrier, we can observe thgave pakcet of/c(q,t) in Fig. 11, we observe a variety of
properties of the period-1 resonance induced in the doublmotions of one wave packet obtained in case
square-well system in Fig.(8). 2b=0.03, T=1 andF=2.5. Thus, for the full description
Another purpose of this paper is to make the property obf tunneling properties exhibited by a system with a dynami-
time evolution of an initial wave packef(q,t) follow the cal symmetry, we observe the Husimi function of the wave
dynamical property of the one Floquet statg(q,t) associ- packet ofig(qg,t) when they correspond to integral multiples
ated with the stable fixed point of period-1 resonance. As awf the half period of the driving force in Fig. 1d). It con-
example, the state afg(q,t=0) is given by they,, of Fig.  firms the validity of Eqs(10) and (11) which indicate that
9(b) if F=2.5, 20=0.03. In this case, the property of the #¢(q,nT) is exactly equal ta/z(q,0) andie(q,nT+T/2) is
state ofg(q,t) associated with the stable fixed point also given by #z(—q,0). Figure 11b) shows the detailed de-
stands for the global property of an island of period-1 resoscriptions of the dynamical motion of the wave packet of

FIG. 9. The Husimi functions of some Floquet states compare
with the classical Poincarsurface of sections of Fig. 8. The shape
of tori of regular islands of nonlinear resonance shown on the Hu
simi functions as drawn irib) is evident, but its trace is still re-
tained on those ig). The y,3 of (a) and x4, of (b) are, respectively,

¥e(q,nT)=ye(q,t=0), (10
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probability p, (t) in Fig. 11(c). The oscillatory motion of

sel T T =000 | 7SR T T [t=L3 p(t) with a period 1 continues without undergoing any dis-

é = = sipation.

On the one hand, the wave packeti/ef{(q,t=0) becomes
Pr 1Pr ] more strongly localized about the stable fixed point of

I 1] ] period-1 resonance generated by increasing the amplitude of
. T the driving force though it was not shown in this paper. This
N T %7.51: o t=2.0'<(;~ is revealed when the generating condition of the period-1

1 resonance is improved by the increase of the amplitude of
p | pl the driving force.

I ] | The tunneling rate of the wave packet ¥f(q,t) under-

. <= @ o going enhanced tunneling by the period-1 resonance is in-
asel L IS versely proportional to the amplitude of the thickness of the
7‘5“@ [% 5m t=100.00, central potential and proportional to the amplitude of the

I ] ] driving force. In other words, the amplitude of the oscillation

pt {p ] of p. (t) is reduced with the increase of the amplitude of the

thickness of the central potential barrieb.2The amplitude

is raised with the increase of the amplitude of the driving
force F. Since this tunneling is induced by the role of non-
linear resonances, the tunneling rate is enhanced by the in-
crease of the amplitude of the driving force.

In summary, the tunneling rate gfz(q,t) is increased by
reinforcing the role of period-1 resonance. However, it is
different from the dc resonantly enhanced tunneling in quan-
tum wells which exhibits a drastic reduction of the tunneling
time in an asymmetric double-well system when the ground
state of the one well is aligned with an excited state of the
other well by applying a dc electric fielB7-40.

C. Application on tunnel controlling

So far, we have discussed the mechanism of suppressed
tunneling and enhanced tunneling. For the tunneling of a
wave packet ofiy(qg,t) to be effectively suppressed by the
period-1/2 resonance, this wave packet must resemble the
wave packet ofy5(q,t). On the one hand, for the tunneling
of a wave packet ofi(q,t) to be effectively enhanced by the
period-1 resonance, this wave packet needs to resemble the
wave packet of/g(q,t). Henceforth, for optimum control of
the wave packet ofi(q,t), it is required that theyg(q,t) and
the ¢z(q,t) have similar forms.

To find a tendency on the change of the difference be-
tween 5(q,t=0) and ¥z(q,t=0) when the amplitude of
the driving force is increased, we present the shapes of the
¥5(g,t=0) and theye(q,t=0) for F=2.5 andF=5.8 in
Figs. 12a) and 12b), respectively, where,’s are the coef-

FIG. 11. Time evolution of a wave packet ¢f(q,t) chosen in  ficients that represent the amplitude of the projection of a
Fig. 10 in case B=0.03. Husimi functions ofj=(q,t) at selected wave packet ofys5(q,0) and ¢(q,0) on the eigenfuction
times corresponding to integral multiples of the half period of theu,(q) of Hy, i.e., ¥s(q,0)==c,un(q) or g(q,0)
driving force are drawn irfa). The time evolution of y(q,t)|? for =3cyun(q). Theyg(q,0)’s and theye(q,0)’s are presented
short time intervals is drawn ith). The occupation probability in jn the left and right side of Fig. 12. For te=2.5 of Fig.
the left well p,(t) is drawn in(c). The detailed descriptions are 12(g), the difference between two wave packets is large. To
given in the contents. T=1, F=25 =003, u=1, jjystrate, the amplitudes af,q,C,, Of ¥5(q,0) and the am-
h=1, 2a=8, V,=>500). plitudes ofcsg,C4q Of ¢(q,0) are large. Whereas, the am-

plitudes of ca9,Csq Of ¥5(q,0) and the amplitudes of
¥e(q,t). The motion of the wave packet can be described byc,1,C45 Of ¥£(q,0) are not large. Therefore, the amplitude
the fast oscillation having the same period 1 as the drivind #s(9,0)| #g(9,0))=0.62 is considerably smaller than 1.
force. The fast oscillation of a periol=1 can be under- But, for theF=5.8 of Fig. 1Zb), the difference between two
stood as having a relation to the classical oscillation of avave packets is greatly reduced. For example, the ampli-
particle in the absence of the central barrier. To present theudes ofcsg,C41,C43 Of the ¢5(q,t) and theye(q,0) are si-
property of tunneling more clearly, we plot the occupationmultaneously large. This shows the amplitude
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crossing[13] around a certain amplitude of the driving force

!
1.0[ ' | 1.0[ ' ! : of F=4.2 or 5.6 as shown in Fig(B). Then, the localization
i 7 i ] of the doublet state may be broken. The localization of the
i \ | ‘ 1 | l : eigenstate of enhanced tunneling(qg,t), may also be bro-
Cn [ ¥ | | L Cn EIRRRREY ken at a certain amplitude of the driving force due to chaos-
- 4 L . induced avoided level crossing. With the increase of the am-
r 1 - 1 plitude of the driving force, the occurring frequency of this
i 7 i 7 avoided level crossing increases as the chaotic region in the
-10! I A 1-1.00 | A i Poincaresurface of section grows. As a result, we cannot
35 n 50 35 n 50 simply choose the large amplitude of the driving force to
control the tunneling of the wave packet. We have to prop-
(a) erly choose the system parameters that are unrelated to the
avoided level crossing.
1.0, ' ! 1 1.0L ! ! ]
L 4 L 4 V. CONCLUSIONS
L I | | | I . i | I | l | _ In this paper, we studied that the generation of nonlinear
Cn e I —. i, Cnt | A e resonance is responsible for the change of tunneling in a
- 1 r 1 driven double square-well system when its central potential
i I i i barrier is very tall and very thin. When a classical nonlinear
I | i system is perturbed by a sinusoidal driving force, the system
-1.0 1 1 -1.0 L I manifests many patterns of resonance islands and conse-
35 n 50 35 n 50 guently it becomes more stable. This same mechanism was
(b) observed in our model system associated with quantum tun-
neling. That is, without the driving force, the generating con-

dition of the period-1/2 resonance is poor due to the tunnel-
FIG. 12. The shapes ofis(q,t=0) and ¥g(q,t=0) when ing effept througlh the central_ potential barrier, and the
F=2.5 andF =5.8 are presented i@ and(b), respectively, where generating condition of t.he period-1 resonance is also poor
c,’s are the coefficients of the amplitude of the projection of a wave@S @ result of the blocking effect of tunneling through the
packet of ¥ and ye on the eigenfunctionu, of H,, ie.  Central potential barrier. But, if our system is perturbed by
Ps=SCoUn(Q) OF Ye=Sc,uy(q). ¥<(9,0)'s and ¢e(q,0)’s are  the driving force, the traces of nonlinear resonances are
presented in the left and right side of the figure, respectively. ~ Manifested, and consequently the tunneling rate through the
central potential barrier is changed. We observed that the
direction of change of the tunneling rate is the same as that

(#5(0,0)|#e(q,0))=0.81 to also be large. Consequently, theof the good condition for nonlinear resonance. Therefore, the

resemblance between two wave packets is even greater in t & ; : ;
) . 2 neration of nonlinear resonance also plays an important
large amplitude of the drving force=5.8. In addition, the B piay P

i . f 0 is | i th h role in a quantum tunneling system without classical coun-
tugneslng t'mheT 0 gS(qr’] ) is o?gelr. In the case”w €€ terpart. In particular, we studied the properties of the Floquet
F._ 58. I.n other words, the tunnel sp ittinge is smaller aS  states associated with the stable fixed point that stands for
Fig. 7(b) illustrates. So, if we want to control the tunneling o reqular island of a nonlinear resonance and showed the
of a wave packet of(q,t) as in Fig. 1, we must choose the ,gipility of tunnel controlling by changing the properties.
wave packet ofig(q,t=0) by the linear combination of

lﬂS(qu) and lﬂE(an)' i'e'1 lﬂ(q,t:O):[lﬁs(q,O)

+ e(q,0)]/+/2. Then, as observed in Fig. 1, tunnel control- ACKNOWLEDGMENTS
ling is more effective in the case wheFe=5.8 rather than
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